1998-2022 lantab.com Network Studio. All Rights Reserved. 沪ICP备12018245号
考试科目
高等数学、线性代数
考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为100分,考试时间为120分钟.
二、答题方式
闭卷、笔试.
三、试卷内容结构
高等教学 约80%
线性代数 约20%
四、试卷题型结构
单项选择题30小题,每小题2分,共60分
判断题20小题,每小题2分,共20分
解答题(包括证明题)3小题,共20分
考试内容及要求
高等数学部分
一、函数、极限、连续
1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系;
2.掌握函数的奇偶性、单调性、周期性和有界性;
3.理解反函数、复合函数的概念,了解分段函数及隐函数的概念;
4.掌握基本初等函数的性质及其图形,了解初等函数的概念;
5.理解数列与函数极限的直观定义,了解极限的分析定义;
6.掌握极限的性质及四则运算法则;
7.掌握利用两个重要极限求极限的方法;
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限;
9.理解函数连续性的概念,会判别函数间断点的类型;
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
二、一元函数微分学
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系;
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则,会求函数的微分;
3.了解高阶导数的概念,会求简单函数的高阶导数;
4.会求分段函数及隐函数的导数;
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理;
6.掌握用洛必达法则求未定式极限的方法;
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用;
8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;
9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.
三、一元函数积分学
1.理解原函数的概念,理解不定积分和定积分的概念;
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法;
3.会求有理函数、三角函数有理式和简单无理函数的积分;
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式;
5.了解反常积分的概念,会计算反常积分;
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力等)及函数平均值.
四、多元函数微积分学
1.了解多元函数的概念,了解二元函数的几何意义;
2.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数;
3.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).
线性代数部分
一、行列式
1.了解行列式的概念,掌握行列式的性质;
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵以及它们的性质;
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质;
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵;
4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法;
5.了解分块矩阵及其运算..
三、向量
1.了解向量的线性组合与线性表示的概念;
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法;
3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩;
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.
来源未注明“中国半岛真人体育 ”的资讯、文章等均为转载,本网站转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性,如涉及版权问题,请联系本站管理员予以更改或删除。如其他媒体、网站或个人从本网站下载使用,必须保留本网站注明的"稿件来源",并自负版权等法律责任。
来源注明“中国半岛真人体育 ”的文章,若需转载请联系管理员获得相应许可。
联系方式:chinakaoyankefu@163.com
扫码关注
了解考研最新消息