1998-2022 lantab.com Network Studio. All Rights Reserved. 沪ICP备12018245号
个人简介
唐刚,男,1961年10月出生,曾任中国矿业大学理学院院长,学院党委书记。现任物理学院院长、教授;1979年9月至1983年7月北京师范大学物理系本科生毕业获理学学士学位,1985年9月至1988年7月北京师范大学物理学硕士研究生毕业获理学硕士学位(固体物理学),1998年9月至2001年7月北京师范大学物理系博士研究生毕业获理学博士学位(凝聚态物理学);现任教育部高等学校物理学类专业教学指导委员会委员(2013-2017),国家科学技术奖评审委员,江苏省物理学会理事,主要研究领域为统计物理和凝聚态理论;主要研究方向为非平衡生长动力学和材料断裂理论;2001年8月至2002年8月香港浸会大学非线性中心博士后研究员,2003年8月至2003年11月香港浸会大学物理系访问学者,2009年2月至2009年8月美国Emory 大学物理系访问学者;主持国家自然科学基金面上项目1项,教育部回国留学人员科研基金项目1项,中央高校基本科研经费项目多项,在国内外学术刊物上发表SCI收录论文70余篇。
联系方式:gangtang@cumt.edu.cn, 0516-83591566(O)
研究领域
主要研究领域为统计物理和凝聚态理论;主要研究方向为非平衡生长动力学理论和材料断裂动力学理论
科研项目
主持:
1.国家自然科学基金面上项目: 表面界面粗糙生长异常动力学标度性质的理论研究(批准号:10674177,2007年)
2. 教育部留学回国人员科研启动基金项目:
发表论文
[1] Y. Yang, G. Tang et al., Numerical investigations of dynamic behaviors of the restricted solid-on-solid model for Koch fractal substrates[J]. Acta Phys. Sin. , 64(2015) .
[2] Y.L. Chen, G. Tang et al. Schramm–Loewner evolution theory of the asymptotic behaviors of (2+1)-dimensional Wolf–Villain model[J]. Physica A, 465 (2017).
[3] Y. Yang, G. Tang, L.J. Song, Z.P. Xun, H. Xia, D.P. Hao, Numerical simulations of dynamic properties of the restricted solid-on-solid model on fractal substrates, Acta Physica Sinica, 63 (2014).
[4] Z.P. Xun, G. Tang, H. Xia, D.P. Hao, L.J. Song, Y. Yang, Conformal invariance of isoheight lines of the (2+1)-dimensional etching surfaces, Acta Physica Sinica, 63 (2014).
[5] Z.P. Xun, G. Tang, L.J. Song, K. Han, H. Xia, D.P. Hao, Y. Yang, Dynamic scaling behaviors of the Etching model on fractal substrates, Journal Of Statistical Mechanics-Theory And Experiment, (2014).
[6] H. Xia, G. Tang, Y.H. Lan, Nonuniversality of Critical Exponents in a Fractional Quenched Kardar-Parisi-Zhang Equation, Journal Of Statistical Physics, 154 (2014) 1228-1240.
[7] L.J. Song, G. Tang, Y.W. Zhang, K. Han, Z.P. Xun, H. Xia, D.P. Hao, Y. Li, Surface structures of equilibrium restricted curvature model on two fractal substrates, Chinese Physics B, 23 (2014).
[8] D.P. Hao, G. Tang, Z.P. Xun, H. Xia, K. Han, Crossover behavior in the avalanche process of the fiber bundle model in local load sharing, Physica a-Statistical Mechanics And Its Applications, 416 (2014) 135-141.
[9] K. Han, H.P. Li, X.P. Shen, G. Tang, Y.Y. Chen, Z.H. Zhang, Quantum chemistry study on nonlinear optical properties of hemicyanine dye derivatives with different electron donor groups, Computational And Theoretical Chemistry, 1044 (2014) 24-28.
[10] Z.P. Xun, G. Tang, H. Xia, D.P. Hao, Numerical study on the dynamic behavior of internal structure of 1+1-dimensional ballistic deposition model, Acta Physica Sinica, 62 (2013).
[11] H. Xia, G. Tang, Z.P. Xun, D.P. Hao, Numerical evidence for anomalous dynamic scaling in conserved surface growth, Surface Science, 607 (2013) 138-147.
[12] J.J. Ma, H. Xia, G. Tang, Dynamic scaling behavior of the space-fractional stochastic growth equation with correlated noise, Acta Physica Sinica, 62 (2013).
[13] Y. Li, G. Tang, L.J. Song, Z.P. Xun, H. Xia, D.P. Hao, Numerical simulations of the phase transition property of the explosive percolation model on Erdos Renyi random network, Acta Physica Sinica, 62 (2013).
[14] D.P. Hao, G. Tang, H. Xia, Z.P. Xun, K. Han, Avalanche process of the fiber-bundle model with stick-slip dynamics and a variable Young modulus, Physical Review E, 87 (2013).
[15] K. Han, J.J. Wang, F. Zhou, X.P. Shen, Y.F. Shen, Y.X. Wu, G. Tang, Goos-Hanchen shift of self-collimated beam in Kretschmann configuration based on photonic crystal, Acta Physica Sinica, 62 (2013).
[16] Y.W. Zhang, G. Tang, K. Han, Z.P. Xun, Y.Y. Xie, Y. Li, Numerical simulations of dynamic scaling behavior of the etching model on fractal substrates, Acta Physica Sinica, 61 (2012).
[17] Z.P. Xun, Y.W. Zhang, Y. Li, H. Xia, D.P. Hao, G. Tang, Dynamic scaling behaviors of the discrete growth models on fractal substrates, Journal Of Statistical Mechanics-Theory And Experiment, (2012).
[18] Z.P. Xun, G. Tang, K. Han, H. Xia, D.P. Hao, Y. Li, Asymptotic dynamic scaling behavior of the (1+1)-dimensional Wolf-Villain model, Physical Review E, 85 (2012).
[19] Y.Y. Xie, G. Tang, Z.P. Xun, K. Han, H. Xia, D.P. Hao, Y.W. Zhang, Y. Li, Numerical simulation of dynamic scaling behavior of the etching model on randomly diluted lattices, Acta Physica Sinica, 61 (2012).
[20] H. Xia, G. Tang, Z.P. Xun, D.P. Hao, Universal Behaviour of (2+1)-Dimensional Stochastic Equations for Epitaxial Growth Processes, Journal Of Statistical Physics, 149 (2012) 1086-1095.
[21] H. Xia, G. Tang, D.P. Hao, Z.P. Xun, Dynamics of surface roughening in the space-fractional Kardar-Parisi-Zhang growth: numerical results, Journal Of Physics a-Mathematical And Theoretical, 45 (2012).
[22] H. Xia, G. Tang, D. Hao, Z. Xun, Depinning transition in disorder media: a fractional approach, European Physical Journal B, 85 (2012).
[23] D.P. Hao, G. Tang, Z.P. Xun, H. Xia, K. Han, The avalanche process of the multilinear fiber bundles model, Journal Of Statistical Mechanics-Theory And Experiment, (2012).
[24] D.P. Hao, G. Tang, H. Xia, K. Han, Z.P. Xun, Effects of shadowing on the scaling behavior of the ballistic deposition model, Acta Physica Sinica, 61 (2012).
[25] D.P. Hao, G. Tang, H. Xia, K. Han, Z.P. Xun, Simulation Study on the Avalanche Process of Continuous Damage Fiber Bundle Model with Strong Disorder, Journal Of Statistical Physics, 146 (2012) 1203-1212.
[26] D.P. Hao, G. Tang, K. Han, H. Xia, Z.P. Xun, Simulation study on the avalanche process of the fiber bundles with strong heterogeneities, Physica a-Statistical Mechanics And Its Applications, 391 (2012) 4686-4691.
[27] K. Han, J.J. Wang, Y.F. Sheng, F.L. Ju, X.P. Sheng, Y.X. Wu, G. Tang, Multi-photon-pumped stimulated emission from ZnO nanowires: A time-resolved study, Physics Letters A, 376 (2012) 1871-1874.
[28] M.Q. Gu, Q.Y. Xie, X. Shen, R.B. Xie, J.L. Wang, G. Tang, D. Wu, G.P. Zhang, X.S. Wu, Magnetic Ordering and Structural Phase Transitions in a Strained Ultrathin SrRuO3/SrTiO3 Superlattice, Physical Review Letters, 109 (2012).
[29] W. Zhou, G. Tang, K. Han, H. Xia, D.P. Hao, Z.P. Xun, X.Q. Yang, Y.L. Chen, R.J. Wen, CONFORMAL INVARIANCE OF CONTOUR LINES ON THE (2+1)-DIMENSIONAL RESTRICTED SOLID-ON-SOLID SURFACE, Modern Physics Letters B, 25 (2011) 255-264.
[30] H. Xia, G. Tang, J.J. Ma, D.P. Hao, Z.P. Xun, Scaling behaviour of the time-fractional Kardar-Parisi-Zhang equation, Journal Of Physics a-Mathematical And Theoretical, 44 (2011).
[31] G. Tang, H. Xia, D.P. Hao, Z.P. Xun, R.J. Wen, Y.L. Chen, Evidence for the anomalous scaling behaviour of the molecular-beam epitaxy growth equation, Chinese Physics B, 20 (2011).
[32] D.P. Hao, G. Tang, H. Xia, K. Han, Z.P. Xun, Finite size effect of the ballistic deposition model with shadowing, Acta Physica Sinica, 60 (2011).
[33] K. Han, Z.Y. Wang, X.P. Shen, Q.H. Wu, X. Tong, G. Tang, Y.X. Wu, Mach-Zehnder interferometer designed based on self-collimating beams and photonic band gap in photonic crystals, Acta Physica Sinica, 60 (2011).
[34] X.Q. Yang, F. Liu, Y. Jia, M. Deng, H.P. Guo, G. Tang, Oscillations of granular mixture gases with vertical vibration, Acta Physica Sinica, 59 (2010) 1116-1122.
[35] Z.P. Xun, G. Tang, K. Han, H. Xia, D.P. Hao, X.Q. Yang, W. Zhou, Extensive numerical study of the anomalous dynamic scaling of the Wolf-Villain model, Physica a-Statistical Mechanics And Its Applications, 389 (2010) 2189-2197.
[36] Z.P. Xun, G. Tang, K. Han, H. Xia, D.P. Hao, Y.L. Chen, R.J. Wen, Mound morphology of the 2+1-dimensional Wolf-Villain model caused by the step-edge diffusion effect, Physica a-Statistical Mechanics And Its Applications, 389 (2010) 5635-5644.
[37] Z.P. Xun, G. Tang, K. Han, D.P. Hao, H. Xia, W. Zhou, X.Q. Yang, R.J. Wen, Y.L. Chen, Numerical study of anomalous dynamic scaling behaviour of (1+1)-dimensional Das Sarma-Tamborenea model, Chinese Physics B, 19 (2010).
[38] G. Tang, Z.P. Xun, R.J. Wen, K. Han, H. Xia, D.P. Hao, W. Zhou, X.Q. Yang, L. Chen, Discrete growth models on deterministic fractal substrate, Physica a-Statistical Mechanics And Its Applications, 389 (2010) 4552-4557.
[39] G. Tang, D.P. Hao, H. Xia, K. Han, Z.P. Xun, Effects of memory on scaling behaviour of Kardar-Parisi-Zhang equation, Chinese Physics B, 19 (2010).
[40] K. Han, M.X. Li, H.P. Li, Y.X. Wu, G. Tang, Q.H. Wu, X. Tong, Q. Zhong, The relationships study of structure-nonlinear optical property of two-dimensional charge transfer molecules substituted annulenes, Acta Physica Sinica, 59 (2010) 6250-6255.
[41] H. Xia, G. Tang, Z.P. Xun, Y.F. Li, Anomalous dynamic scaling of the non-local growth equations, Physica a-Statistical Mechanics And Its Applications, 388 (2009) 1399-1404.
[42] H. Xia, G. Tang, K. Han, D. Hao, Z. Xun, Scaling behavior of the time-fractional equations for molecular-beam epitaxy growth: scaling analysis versus numerical stimulations, European Physical Journal B, 71 (2009) 237-241.
[43] K. Han, H.P. Li, Y.X. Wu, G. Tang, M.X. Li, Q. Zhong, Z.M. Huang, Theoretical studies on the frequency-dependent first hyperpolarizability of a hemicyanine derivative, Journal Of Molecular Structure-Theochem, 908 (2009) 69-72.
[44] L. Zhang, G. Tang, Z. Xun, K. Han, H. Chen, B. Hu, Dynamic renormalization-group analysis of the d+1 dimensional Kuramoto-Sivashinsky equation with both conservative and nonconservative noises, European Physical Journal B, 63 (2008) 227-234.
[45] H. Xia, G. Tang, Y.F. Li, Anomalous scaling of surface growth equations with spatially and temporally correlated noise, Communications In Theoretical Physics, 50 (2008) 227-230.
[46] K. Han, H.P. Li, G. Tang, Y.X. Wu, H.T. Wang, X.P. Shen, Theoretical study of molecular aggregation in Langmuir-Blodgett films using a dipolar interaction model, Thin Solid Films, 516 (2008) 2138-2143.
[47] X.Q. Yang, W. Zhang, K. Qiu, W.T. Xu, G. Tang, L. Ren, The relations of "go and stop" wave to car accidents in a cellular automaton with velocity-dependent randomization, Physica a-Statistical Mechanics And Its Applications, 384 (2007) 589-599.
[48] G. Tang, D.P. Hao, K. Han, H. Chen, B. Hu, Self-consistent mode-coupling theory of the Sun-Guo-Grant equation, Physica a-Statistical Mechanics And Its Applications, 375 (2007) 97-102.
[49] D.P. Hao, G. Tang, H. Xia, H. Chen, L.M. Zhang, Z.P. Xun, Self-consistent mode-coupling theory of the nonlocal Sun-Guo-Grant equation, Acta Physica Sinica, 56 (2007) 2018-2023.
[50] H. Xia, G. Tang, K. Han, D.P. Hao, H. Chen, L.M. Zhang, Scaling approach to anomalous surface roughening of the (d+1)-dimensional molecular-beam epitaxy growth equations, Modern Physics Letters B, 20 (2006) 1935-1941.
[51] K. Han, Q. Wang, G. Tang, H. Li, X.P. Sheng, Z.M. Huang, Effect of subphase divalent ions on optical second harmonic properties of hemicyanine Langmuir-Blodgett films interleaved with compatible spacer, Thin Solid Films, 476 (2005) 152-156.
[52] L.P. Zhang, G. Tang, H. Xia, D.P. Hao, H. Chen, Scaling analysis of the conservation growth equation with temporally correlated noise, Physica a-Statistical Mechanics And Its Applications, 338 (2004) 431-436.
[53] K. Han, Y.X. Wu, G. Tang, G.Y. Zhang, Q. Wang, H.P. Li, Flow orientation and super-quadratic dependence of second harmonic intensity on the film thickness in hemicyanine Langmuir-Blodgett multilayers, Optical Materials, 27 (2004) 155-160.
[54] G. Tang, L.P. Zhang, Y.X. Wu, H. Xia, D.P. Hao, H. Chen, Scaling approach to the growth equation with a generalized conservation law, Chinese Physics Letters, 20 (2003) 2008-2010.
[55] G. Tang, B.K. Ma, Scaling approach to the anisotropic nonlocal Kardar-Parisi-Zhang equation with spatially correlated noise, International Journal Of Modern Physics B, 16 (2002) 563-569.
[56] G. Tang, B.K. Ma, Scaling analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation with spatially and temporally correlated noise, Acta Physica Sinica, 51 (2002) 994-998.
[57] G. Tang, B.K. Ma, Scaling analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation, Physica a-Statistical Mechanics And Its Applications, 310 (2002) 1-6.
[58] B.B. Hu, G. Tang, Self-consistent mode-coupling approach to the nonlocal Kardar-Parisi-Zhang equation, Physical Review E, 66 (2002).
[59] G. Tang, B.K. Ma, Effect of long-range interactions on the scaling of the noisy Kuramoto-Sivashinsky equation, Physical Review E, 63 (2001).
[60] G. Tang, B.K. Ma, Dynamic scaling of the nonlocal Lai-Das Sarma-Villain equation, Acta Physica Sinica, 50 (2001) 851-855.
[61] G. Tang, B.K. Ma, Scaling approach to the nonlocal surface growth equations, Physica A, 298 (2001) 257-265.
[62] G. Tang, B. Ma, Scaling of the nonlocal growth equations with spatially and temporally correlated noise, International Journal Of Modern Physics B, 15 (2001) 2275-2283.
[63] G. Tang, B.K. Ma, Dynamic scaling of growing surfaces with growth inhomogeneities of screened coulombic function, Chinese Physics, 9 (2000) 737-741.
[64] G. Tang, B. Ma, W.D. Chu, Dynamic renormalization-group approach to growing surfaces with point-defects, Physica A, 282 (2000) 355-361.
教学活动
本科生专业课程:《热力学与统计物理》、《固体物理学》
研究生课程:《固体物理》、《群论及其在凝聚态物理学中的应用》、《凝聚态物理导论》、《表面界面粗糙生长动力学标度理论》、《相变理论中的标度》、《普适类和重整化群理论》
指导学生情况
博士生:
2013年:郝大鹏 博士毕业并取得学位(在职教师)
2012年:夏辉 博士毕业并取得学位(在职教师)
2011年:寻之朋 博士毕业并并取得学位(留校工作)
硕士生:
2015年 宋丽建 考取中科院宁波物质研究生博士研究生(获得国家奖学金)
2013年: 李炎 毕业获得硕士学位(获得国家奖学金)
2012年: 谢裕颍 毕业获得硕士学位
2012年:张永伟 毕业获得硕士学位
2011年:温荣吉 毕业获得硕士学位
2011年:陈玉玲 毕业获得硕士学位
2010年:杨细全 毕业获得硕士学位
2010年:周伟 毕业获得硕士学位,考取西安交通大学博士研究生
2008年:寻之朋 毕业考取中国矿大博士研究生
来源未注明“中国半岛真人体育 ”的资讯、文章等均为转载,本网站转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性,如涉及版权问题,请联系本站管理员予以更改或删除。如其他媒体、网站或个人从本网站下载使用,必须保留本网站注明的"稿件来源",并自负版权等法律责任。
来源注明“中国半岛真人体育 ”的文章,若需转载请联系管理员获得相应许可。
联系方式:chinakaoyankefu@163.com
扫码关注
了解考研最新消息