1998-2022 lantab.com Network Studio. All Rights Reserved. 沪ICP备12018245号
一、函数连续与极限
极限是高数的基本工具,是三大运算之一。求极限是考研试卷中常考的题型,是考试的重点。要求考生对于极限的概念以及求极限的基本方法掌握到位。在这一部分,还有两个重要的概念,即无穷小和间断点,是考试中常考的知识点,此处是我们复习的重点。常考的题型有:无穷小阶的比较,无穷小和极限的结合,间断点类型的判断。
二、一元函数微分学
求导是高数的第二大运算,要求对于各种类型函数的求导过关,也是为后面的多元函数求偏导打下基础。这一部分需要注意两个概念:导数和微分,要求理解导数的定义以及可导的充分必要条件。此外,还有导数的应用,这是内容比较多的一部分,是考试的重点,但不是难点,如函数的单调性、凹凸性、渐近线、拐点和方程根的判别等。这一部分还有一个难点,就是中值定理的相关证明题,不过这部分题目解题思路不太灵活,掌握常见的技巧和方法足可应对。
三、多元函数微分学
多元函数连续、可偏导及可微的定义,以及三者之间的关系要准确区分。多元函数复合函数和隐函数求偏导和求全微分一定要过关。这些都是考试的重点。
四、多元函数积分学
数二和数三同学仅仅考查二重积分的计算,这是考试的重点,是每年必考的,常见题型有二重积分的基本计算,选择合适的坐标系法和积分次序,有必要时进行交换坐标系和积分次序等等,这些都是基本的运算。对于数一的同学,在以上基础上,还需要学习曲线、曲面积分的计算和三重积分的计算。尤其需要注意的是第二类曲线积分和格林公式的结合,三维曲线积分和斯托克斯公式的结合,第二类曲面积分和高斯公式的结合,这些是出大题的地方。
五、微分方程
掌握考纲中要求掌握的几类方程的解法,如可分离变量方程、齐次方程、一阶线性微分方程、可降阶微分方程(数三不要求)、二阶常系数微分方程。需要注意一下常系数线性方程的解的结构。此外,微分方程和变上限函数、多元函数微分学或实际问题,经常会出一些综合题。
来源未注明“中国半岛真人体育 ”的资讯、文章等均为转载,本网站转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性,如涉及版权问题,请联系本站管理员予以更改或删除。如其他媒体、网站或个人从本网站下载使用,必须保留本网站注明的"稿件来源",并自负版权等法律责任。
来源注明“中国半岛真人体育 ”的文章,若需转载请联系管理员获得相应许可。
联系方式:chinakaoyankefu@163.com
扫码关注
了解考研最新消息